Tpl2 is a key mediator of arsenite-induced signal transduction.
نویسندگان
چکیده
Arsenite is a well-known human carcinogen that especially targets skin. The tumor progression locus 2 (Tpl2) gene encodes a serine/threonine protein kinase that is overexpressed in various cancer cells. However, the relevance of Tpl2 in arsenite-induced carcinogenesis and the underlying mechanisms remain to be explored. We show that arsenite increased Tpl2 kinase activity and its phosphorylation in mouse epidermal JB6 P+ cells in a dose- and time-dependent manner. Exposure to arsenite resulted in a marked induction of cyclooxygenase-2 (COX-2) and prostaglandin E(2) (PGE(2)), important mediators of inflammation and tumor promotion. Treatment with a Tpl2 kinase inhibitor or Tpl2 short hairpin RNA suppressed COX-2 expression and PGE(2) production induced by arsenite treatment, suggesting that Tpl2 is critical in arsenite-induced carcinogenesis. We also found that arsenite-induced phosphorylation of extracellular signal-regulated kinases (ERK) or c-Jun NH(2)-terminal kinases (JNK) was markedly suppressed by Tpl2 kinase inhibitor or Tpl2 short hairpin RNA. Inhibition of arsenite-induced ERK or JNK signaling using a pharmacologic inhibitor of ERK or JNK substantially blocked COX-2 expression. Furthermore, inhibition of Tpl2 reduced the arsenite-induced promoter activity of NF-kappaB and activator protein-1 (AP-1), indicating that NF-kappaB and AP-1 are downstream transducers of arsenite-triggered Tpl2. Our results show that Tpl2 plays a key role in arsenite-induced COX-2 expression and PGE(2) production and further elucidate the role of Tpl2 in arsenite signals that activate ERK/JNK and NF-kappaB/AP-1 in JB6 P+ cells.
منابع مشابه
I B Kinase Is an Essential Component of the Tpl2 Signaling Pathway
I B kinase (IKK), a key regulator of immune and inflammatory responses, is known as an effector kinase mediating activation of the transcription factor NFB. Whether IKK also participates in other signaling events is not known. Here we show that IKK serves as an essential component of a signaling pathway that involves activation of the Tpl2 kinase and its downstream targets, MEK1 and ERK. Inhibi...
متن کاملTpl2 knockout keratinocytes have increased biomarkers for invasion and metastasis.
Skin cancer is the most common form of cancer in the USA, with an estimated two million cases diagnosed annually. Tumor progression locus 2 (Tpl2), also known as MAP3K8, is a serine/threonine protein kinase in the mitogen-activated protein kinase signal transduction cascade. Tpl2 was identified by our laboratory as having a tumor suppressor function in skin carcinogenesis, with the absence of t...
متن کاملTPL2 mediates autoimmune inflammation through activation of the TAK1 axis of IL-17 signaling
Development of autoimmune diseases, such as multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), involves the inflammatory action of Th1 and Th17 cells, but the underlying signaling mechanism is incompletely understood. We show that the kinase TPL2 is a crucial mediator of EAE and is required for the pathological action of Th17 cells. TPL2 serves as a master kinase mediating ...
متن کاملThe Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملThe Expression of Signal Regulatory Protein-alpha in Normal and Osteoarthritic Human Articular Cartilage and Its Involvement in Chondrocyte Mechano-transduction Response
Signal regulatory proteins (SIRP) belong to immunoglobulin super family (IgSF) and relate to integrin signaling cascades. It has been shown that SIRPa is expressed in a variety of cells including myeloid cells and neurons. In the present study the expression of this IgSF member in articular chondrocytes was investigated. Methods: Using a panel of anti-SIRPalpha antibodies, immunohistochemistry...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 69 20 شماره
صفحات -
تاریخ انتشار 2009